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Abstract

A direct method is developed for determining the wall heat flux in film condensation on a horizontal elliptical tube. A finite-difference
method is employed to discretize the condensation domain, and then a linear inverse model is constructed to identify the unknown
conditions. The inverse analysis is based on the assumption that the film thickness measurements are available over the domain. Our
approach is to rearrange the matrix forms of the differential governing equation and estimate the unknown surface conditions. Then, the
linear least-squares method is adopted to find the solution. For condensation problem, the governing equation is non-linear. The present
woke proposes a transformed treatment for solving both inverse and direct problems.

In contrast to the traditional approach, the advantage of this method in inverse analysis is that no prior information is needed on
the functional form of the unknown quantities, no initial guess is required and the iterations of calculation process need be done only
once. Finally, the effects of measurement errors, sensor positions and the measurement points on the inverse solutions are discussed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The original Nusselt’s [1] model for film condensation of
a quiescent vapor along an isothermal vertical plate equated
gravity and viscous forces. A number of systems, such as
plates, and bank of tubes, have been extensively studied
under various conditions by many investigators. As for
horizontal elliptical tube surfaces, Wang et al. [2] showed
theoretically and experimentally that an elliptical tube did
possess some advantages over a cylindrical one. Later, Yang
and Chen [3–5] investigated laminar film condensation on
horizontal elliptical tubes.

Beck et al. [6] showed that if the heat flux or temperature
at the surface of a solid are known, then the temperatures
distribution can be found. This is termed a direct problem. If
the surface heat flux or temperature of a solid must be deter-
mined from the temperature measurements at one or more
locations at the surface, this is an inverse problem. How-
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ever, the condensation problems analyzed thus have been
limited to the direct problem. No work is available in the
area of inverse analysis of film condensation. In such cases,
the inverse analysis of a heat transfer problem can provide
a powerful technique to estimate the unknown conditions.

Various methods have been employed to handle the
inverse heat conduction problem (IHCP); these include
analytical or numerical approaches, such as graphical [7],
polynomial [8], Laplace transform [9], finite difference and
finite element [10,11], regularization methods [12], and
conjugate gradient iterative method [13], direct sensitivity
coefficient method [14].

In order to remedy, at least in part, the lack of literature
in this field, this paper continues the study of a recently pre-
sented methodology for solving IHCP. This method [15,16]
rearranges the matrix forms of the direct problem in order
to represent the unknown conditions explicitly. Then, the
inverse model can be used to solve through the least-squares
error method. In general, the governing equation of the
IHCP is linear, but in the condensation problem, the gov-
erning equation is non-linear. The present work proposes
a transformed treatment for solving both inverse and direct
problems. The advantage of applying this method in inverse
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Nomenclature

A matrix is the function of thermal properties
B the coefficient matrix of�
a, b semimajor, semiminor axis of ellipse
cp heat capacity
e an ellipticity of the ellipse
g the acceleration of gravity
hfg the latent heat of condensation
k thermal conductivity
N measuring points
q(φ) wall heat flux
R the reverse matrix of the inverse problem
T̄ the liquid filmwise thickness distribution of

the wall

Greeks
α thermal diffusivity
δ the thickness of the liquid film
φ the angle between the tangent to tube surface

and the normal to direction of gravity
θ the angle measured from the tube upper

generatrix
� matrix is the function of the boundary
�̄ the coefficient vector ofq(φ)
µ the dynamic viscosity of liquid
ρ density
σ the random error of theβ
ω measurement error

Subscript
i index ofφ-axial coordinate

analysis is that no prior information is needed on the func-
tional form of the unknown quantities, no initial guess has
to be used and the number of iterations of the calculation
process is limited to 1. Furthermore, the effects of sensor
position, magnitude of measurement error and the number
of measurements on the accuracy of estimates are examined.

2. Analysis

2.1. Description of the mathematical model

Consider the pure quiescent vapor at saturated state with
saturated temperatureTs condensing on a horizontal ellipti-
cal tube, with major axis 2a in the direction of gravity and
minor axis 2b. The variable heat flux is through the wall over
the entire length of the tube. Thus, condensation occurs on
the wall and a continuous film of the liquid runs downward
over the tube under the influence of gravity. The physical
model under consideration is shown in Fig. 1, where the
curvilinear coordinates (x, y) are aligned along the elliptical
wall surface and its normal. The steady-state laminar film

Fig. 1. Schematic and coordinate system for the condensate film flow on
the elliptical surface.

condensation layer have constant fluid properties. Additional
assumptions are essentially those of Nusselt’s classical anal-
ysis: (1) the inertia and convection terms are neglected; (2)
subcooling of the condensate may be neglected: (3) the in-
terfacial shear forces on the vapor–liquid interface and sur-
face tension force are neglected. Thus it have the following
governing equations for the condensate film:

Momentum equation

0 = µ
∂2u

∂y2
+ ρg sinφ (1)

whereµ is the dynamic viscosity of the liquid,ρ the density
of liquid andg the acceleration of gravity.

Energy equation

d

dx

∫ δ

0
ρuhfg dy = q(x)|y=0 (2)

wherehfg is the latent heat of condensation;q(x) the surface
heat flux andδ the thickness of the liquid film.

The velocity distribution in the film flowing across the
surface can be obtained by integrating Eq. (1) and with the
boundary conditionsu = 0 at y = 0 and∂u/∂y = 0 at
y = δ (no interfacial shear):

u = ρg

µ
δ2 sinφ

[
y

δ
− 1

2

(y
δ

)2
]

(3)

Substituting Eq. (3) into Eq. (2) yields

1

3

ρ2ghfg

µ

d

dx
(δ3 sinφ) = q(x)|y=0 (4)
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whereφ = φ(x) is the angle between the normal to gravity
and the tangent to the tube wall at the position (r, θ ). Here,
θ is the angle measured from the tube upper generatrix;r
the radial distance from the centroid of the ellipse and can
be expressed as

r = a

[
1 − e2

1 − e2 cos2 θ

]0.5

(5)

wheree = √
a2 − b2/a is an ellipticity of the ellipse. With

reference to Fig. 1, the differential elliptical arc length

dx = r dθ

cos(φ − θ)
(6)

By using the geometric relationship for tangent to the
elliptical surface, one has

tanφ = tanθ

1 − e2
(7)

Substituting Eqs. (5)–(7) into Eq. (4), and introducing a
transformation of variable fromx to φ, one obtains the en-
ergy equation as follows:

ρ2g

3µ

hfg

a(1 − e2)
(1 − e2 sin2 φ)3/2

d

dφ
(δ3 sinφ) = q(φ)|y=0

(8)

Eq. (8) is subject to the boundary conditions

dδ

dr
= 0 atφ = 0 (9)

Eq. (8) is non-linear, if letβ = δ3 sinφ, then Eq. (8) becomes
linear, and can be written as

dβ

dφ
= 1

(ρ2g/3µ)(hfg/a(1 − e2))(1−e2 sin2 φ)3/2
q(φ)|y=0

(10)

And the boundary condition equation (9) may be transferred
as follows:
dβ

dφ
= 0 atφ = 0 (11)

The above boundary conditions are given except forq(φ),
which is unknown to be estimated.

2.2. The direct problem

The finite-difference method is employed to discretized
the above governing equation (Eq. (10)) combined with the
boundary conditions. It can be expressed as the following
recursive forms:

1

�φ
(βi+1 − βi)

= 1

(ρ2g/3µ)(hfg/a(1 − e2))(1 − e2 sin2 φ)3/2
q(φ)|y=0

(12)

where�φ is the increments in the spatial coordinate,i the
ith grid along theφ coordinate, andβi = δ3

i sinφi , δi the
liquid film thickness at the grid point (i).

Using the recursive forms, an equivalent matrix equation
can be expressed as

AT̄ = � (13)

where the matrixA is the function of thermal properties and
the scale of the position. The components ofT̄ are theβi in
discretized points, and the components of� are the function
of the boundary conditions. Thus Eq. (13) can be written as
follows:


E

−E E

−E E

.. .
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β1

β2

β3
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βn
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Fq1

Fq2

Fq3

...

Fqn




(14)

whereE = 1/�φ, βi = δ3
i sinφi , and

F = 1

(ρ2g/3µ)(hfg/a(1 − e2))(1 − e2 sin2 φ)3/2

The direct problem considered here is concerned with the
determination of theβi at the nodes when all boundary con-
ditions, and other thermal properties are known. The above
direct problem of Eq. (13) can then be solved using Gauss
elimination method.

2.3. The inverse problem

This inverse problem is to identify the applied heat flux
q(φ) from the liquid film thickness(βi = δ3

i sinφi)measure-
ments taken at the different points of the surface. Suppose
that the applied heat fluxq(φ) is represented as the follow-
ing series forms or non-form (i.e. the heat fluxq(φ) is not
necessary to be a regular form) in the problem domain:

q(φ) =
N∑
i=0

aiζi(φ) (or non-form) (15)

whereζ i(φ) is a non-singular function in the problem do-
main.

For an inverse problems,A can be constructed accord-
ing to the known physical model and numerical methods,
and T̄ can be calculated byβi = δ3

i sinφi . The liquid film
thickness (δi) is taken at the different points of the surface
by the sensor. The coefficients ofq(φ) are the main tasks
to resolve. The coefficients ofq(φ) from � will transfer the
direct formulation to the following inverse forms:

AT̄ = B�̄ (16)



192 P.-T. Hsu et al. / Chemical Engineering Journal 85 (2002) 189–195

B�̄ =



F

F

. . .

F






q1
q2
...

qn


 (17)

where� = B�̄, B is the coefficient matrix of̄� and �̄ is
the coefficient vector ofq(φ), then �̄ can be solved by the
least-squares error method as follows:

�̄ = [(A−1B)T(A−1B)]−1(A−1B)TT = RT (18)

whereR = [(A−1B)T(A−1B)]−1(A−1B)T, it is the reverse
matrix of the inverse problems.

Eq. (16) is assumed to measure all discretized points, and
let β = δ3 sinφ in the problems. In most cases, not all
of the points need to be measured. Therefore, only part of
matrix R andT, and part of vector̄� that correspond to the
measuring positions need be constructed. In general, when
a large portion of the matrices and vector are selected, i.e.
the number of transducers or measuring points is large, the
costs of computation and experiment increase. However, a
large number of measuring points yields increased accuracy
of the estimated results.

When the rank of the reverse matrix is equal to the num-
ber of the unknown variables, then: (1) if the matrix equa-
tion (16) is consistent, a solution exists and is unique;(2) if
the matrix equation is inconsistent, a unique least-squares
solution can be approximated.

3. Results and discussion

The inverse film condensation problem defined by Eqs. (1)
and (2) and are used in the following examples to verify the
accuracy, efficiency, and versatility of the proposed method
for estimating the unknown conditions of the wall. In all ex-
amples, for the direct problem, the special interval 0.0◦ ≤
φ ≤ 180◦ is divided into 1000 intervals, the spatial incre-
ments is chosen as�φ = 0.18◦, Eqs. (12) and (13) are ap-
plied to obtain theβi = δ3

i sinφi at the nodes of the wall.
Finally, the liquid film thickness distribution at some spe-
cific position where the sensors were assumed installed is
obtained by the direct method, this values then being used
as the simulated measured liquid film thicknessδ, and let
β = δ3 sinφ to predict the unknown conditions of the wall
in the inverse analysis.

In all examples, the simulated liquid film thickness(βi =
δ3
i sinφi) is presumed to contain measurement errors. In

other words, the random errors are added to the exact value
of β, which is computed from the solution of direct problem.
Thus, it can be written as

T̄simulated= T̄exact+ T̄error = T̄exact(1 + σ) (19)

whereσ is the random error of theβ. Letting ω to be the
random error of the measurement, the relationship between
σ andω is σ = ω3. The measurement errors caused by the

interpolation of the measuring instruments, uncertainty due
to calibration, fluctuation in sensor reading during measure-
ment, and the effect of condense film surface waves.

In the simulation, the accuracy of the estimation of un-
known conditions from the knowledge of theβi = δ3

i sinφi
at measurement points are examined. As a result, the esti-
mated solutions without containing measurement error(ω =
0) converged to the solutions solved by the finite-difference
method for all examples. Furthermore, the solutions are
unique through the proposed verifying method. Detailed de-
scriptions for the problem are presented as follows:

Example 1. The saturation temperature of the vapor is
100◦C. The liquid film properties are taken asµ =
0.282× 10−3 N s/m2, hfg = 2258 kJ/kg, g = 9.81 m/s2

andρ = 840 kg/m3, which represent the water. The spatial
variation of the strength of the wall heat fluxq(φ) is taken as

q(φ) = 10 000(W/m2) 0.0◦ ≤ φ ≤ 90◦

q(φ) = 7500(W/m2) 90.0◦ ≤ φ < 180◦

For this example, the estimated heat fluxq(φ) is expressed
by two coefficients,a1 = 10 000 W/m2 is the value ofq(φ)
at spatial grid which located along theφ axial from φ =
0.0◦ to 90◦ anda2=7500 W/m2 is the value ofq(φ) at spa-
tial grid which located along theφ axial from φ = 90.0◦
to 180◦. The value ofζ i(φ) is equal to 1. Fig. 2 shows the
distribution of the condensate film thickness along the hori-
zontal elliptical surface. The estimated values, without con-
sidering the measurement errors, are presented in Table 1,
and give a very good approximation for two measurement
points (the measured position isφ = 1.8◦ and 18◦).

Table 1 also shows a comparison of the estimated wall
heat flux for measurement errorω = 10.00, and 21.54% (the
correspondence errorσ equals 0.1 and 1.0%, respectively)

Fig. 2. Condensate film thickness along elliptical surface.
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Table 1
Estimates of the wall heat flux for Example 1 with measurement errors (N, the number of measurement point)

Sensor location (◦) Range (◦) qexact(φ) qestimate(φ)

ω = 0% ω = 10.00% ω = 21.54%

φ = 1.8,18(N = 2) 0–90 10000 10000 – –
90–180 7500 7500 – –

φ = 1.8,18,108,126(N = 2) 0–90 10000 10000 10015 10145
90–180 7500 7500 7375 6257

with four measurement points. The measured position lo-
cated atφ = 1.8◦, 18◦, 108◦ and 126◦. The maximum dis-
crepancies in heat flux at the wall are 1.67 and 16.57% for
theω = 10.00 and 21.54% error cases, respectively.

In this example, the estimated values contain measure-
ment errors, the magnitude of the discrepancies in the esti-
mated surface heat flux is directly proportional to both the
size of measurement error and the condensate film thickness.

Example 2. The variation of the wall heat fluxq(φ) over
space is presented as

q(φ) = 5000+ 5000(1 + cosφ) (W/m2) 0.0◦ ≤ φ < 180◦

the other conditions being the same as Example 1.
The estimated heat fluxq(φ) is expressed by 21 coeffi-

cients. The value ofζ i(φ) is equal to 1. The distribution of
the condensate film thickness along the horizontal elliptical
surface is shown in Fig. 2 also.

The estimated values, excluding measurement error, are
presented in Fig. 3. One observes a very good approxima-
tion for 22 measurement points (N = 22, the measured po-
sition being equally located along theφ-axial from 4.68◦
to 175.68◦, one per every 9◦, and located atφ = 0.18◦,

Fig. 3. Estimated wall heat flux for Example 2 without measurement error.

Fig. 4. Estimated wall heat flux for Example 2 with measurement error
(ω = 10%).

177.84◦). For 21 measurement points case, large film thick-
ness (the position being located atφ = 172◦ and 180◦) make
the estimated results deviate from the exact solution.

Fig. 4 shows a comparison of the respective estimated
wall heat flux for measurement pointsN = 22, andN = 42
(N = 42 with 22 measurement points being the same as in
the excluding-measurement-error case, the other 20 sensors
being located along theφ-axial from 11.34◦ to 173.34◦, one
per every 9◦, and located atφ = 2.77◦) with measurement
errorω = 10.00% (correspondence errorsσ equal to 0.1%).
The estimated value is shown in the figure, is seen to oscil-
late. The oscillation becomes more severe for film thickness
response data as increases. The maximum discrepancies in
heat flux at the wall are 9.57 and 2.35% for theN = 22
andN = 42 cases, respectively. The magnitude of the dis-
crepancies in the surface heat flux is directly proportional
to the thickness of condensate film, and requires a greater
number of measurement points to increase the accuracy of
the estimates.

Fig. 5 shows a comparison of the respective estimated
wall heat flux for measurement errorω = 10.00, and
21.54% (correspondence errorsσ equal to 0.1 and 1.0%,
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Fig. 5. Estimated wall heat flux for Example 2 with 42 measurement
points.

respectively) with 42 measurement points (the measured
positions being same as above). The estimated value is
shown in the figure. The oscillation becomes more severe
for film thickness response data as measurement error in-
creases. The maximum discrepancies in heat flux at the wall
are 2.35 and 25.12% for theω = 10.00 and 21.54% error
cases, respectively.

Example 3. The spatial variation of the wall heat fluxq(φ)
is taken as follows:

q(φ) = 5000(W/m2), 0.0◦ ≤ φ ≤ 45◦

q(φ) = 5000

[
1 + φ − 45◦

45◦

]
(W/m2), 45◦ ≤ φ ≤ 90◦

q(φ) = 10000

[
1 − φ − 45◦

45◦

]
(W/m2), 90◦ ≤ φ ≤ 135◦

q(φ) = 5000(W/m2), 135◦ ≤ φ ≤ 180◦

the other conditions are the same as Example 1.
The estimated heat fluxq(φ) is expressed by 21 coeffi-

cients. The value ofζ i(φ) is equal to 1. The distribution of
the condensate film thickness along the horizontal elliptical
surface is shown in Fig. 2 also.

The estimated values, without measurement error, are
presented in Fig. 6. One observes a very good approx-
imation for 22 measurement points (N = 22, the mea-
sured position being the same as Example 2 for the
excluding-measurement-error case). For 21 measurement
points case, large film thickness (the position being located
at φ = 172◦ and 180◦) make the estimated results deviate
from the exact solution.

Fig. 6. Estimated wall heat flux for Example 3 without measurement error.

Fig. 7 shows a comparison of the respective estimated
wall heat flux for measurement errorω = 10.0% (corre-
spondence errorsσ equal to 0.1%) with 22 measurement
points, andω = 17.1% (correspondence errorsσ equal to
0.5%) with 42 measurement points (the measured positions
being same as above). The estimated value is shown in
the figure. The oscillation becomes more severe for film
thickness response data as measurement error increases.
The maximum discrepancies in heat flux at the wall are
16.4 and 20.09% for theω = 10.0 and 17.1% error cases,
respectively.

In the above examples, the estimated values, excluding
measurement errors, are obtained with the use of only a few

Fig. 7. Estimated wall heat flux for Example 3 with measurement error.
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of measurement points. Nevertheless, a very good approxi-
mation of the wall heat flux is obtained. When considering
the measurement errors, the magnitude of the discrepancies
in the surface heat flux is directly proportional to the size
of measurement error. Thus, greater measurement error re-
quires a greater number of measurement points to increase
the accuracy of the estimates.

The inverse matrixR (Eq. (18)) may become ill-
conditioned for situations with high measurement error
and when measured at locations with thick film, which
means that the estimated values are very sensitive to any
error in the liquid film thickness measurement, and may
even become unstable. The sensitivity depends on the type
of problem being solved (i.e. the governing equation and
its boundary conditions), the position at which thickness
of the condensed film is measured, and the measurement
error. The present results confirm that the inverse val-
ues are extremely sensitive to measurement error, sensor
location and number of sensors, that is ill-posed nature
of IHCP, as mentioned by Beck et al. [6] and Hensel
[17].

4. Conclusion

The proposed method is successfully applied to the solu-
tion of a simulated inverse filmwise condensation problem
involving estimating surface heat flux. A direct inverse
formulation is constructed using a reverse matrix, which is
derived from the governing equation and boundary condi-
tions. Three examples are used to evaluate the robustness
of the proposed method. From the results, it appears that,
discounting measurement error, the proposed method yields
an accurate solution, even when using only a few points of
measurement. When measurement errors are included, in
order to enhance stability and accuracy, film thickness data
require more measurement points at locations closer to the
surface. This proposed inverse analytic method requires no
prior information regarding the functional form of the un-
known quantities, requires no initial guess, and the number
of iterations in the calculation process is limited to 1. This
implies that the present model offers a great deal of flexi-
bility. Further, the results confirm that the proposed method
is effective and efficient for inverse heat condensation prob-
lems. Although the difficulty of the measurement of the film
thickness in practice is acknowledged, it is possible to use

the proposed method to estimate the wall heat flux in film
condensation on a surface.
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